七年级数学说课稿

时间:2024-12-07 00:15:19
七年级数学说课稿

七年级数学说课稿

作为一名默默奉献的教育工作者,通常会被要求编写说课稿,借助说课稿可以更好地组织教学活动。那么优秀的说课稿是什么样的呢?下面是小编为大家收集的七年级数学说课稿,希望对大家有所帮助。

七年级数学说课稿1

说教材分析

本章主要内容包括:不等式的有关基本概念,不等式的性质,一元一次不等式(组)的解法,利用不等式(组)解决实际问题和课题学习。此部分内容是在学生已经学过的方程(组)的基础上,进一步讨论不等式,教材首先从数量大小之分说起,这是人们熟知的客观事实。由大小,就有相等或不相等,例如,在引言中给出的不等式2+3>1+3,a+bc等,用等式可以研究相等关系,要研究不相等关系,也需要专门的数学工具,这就是不等式。

说教学目标

1.知识与能力

感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发的寻找不等式的解,会把不等式的解集正确的表示在数轴上。

2.数学思维

经历由具体实例建立不等式模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想。

3.情感态度与价值观

引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识,让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

说教学重点与难点

1重点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确的表示在数轴上。

2.难点:正确理解不等式解集的意义。

说教学方法:探究、合作、质疑

说教具:三角尺、多媒体课件

说教学过程

  一、创设情境,提出问题。

多媒体展示

问题1:一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00之前驶过A地,车速应满足什么条件?

问题2:元宵佳节,在燃放各种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10米以外的安全区域。已知导火线的燃烧速度为0.02米/秒,人离开的速度为4米/秒,那么导火线的长度应为多少厘米?

设计意图:通过实例创设情境,培养学生观察能力,激发他们的学习兴趣。

  二、合作探究新知

(一)不等式、一元一次不等式的概念

学生活动:学生与同伴交流,小组展开讨论,在学生发表自己意见的基础上,归纳结论。

设计意图;引导学生仔细观察并归纳不等式的定义,从而引出一元一次不等式。

多媒体演示:

下列式子中哪些是不等式?哪些是一元一次不等式?

(1)a+b=b+a(2)-3<2(3)x≠1

(4)x+3>6(5)2+1<3+5(6)2<5-x

(二)不等式的解、不等式的解集。

多媒体展示

问题1、要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?

问题2、车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?

问题3、我们曾经学过使方程两边相等的未知数的值就是方程的解,我们也可以把使不等式成立的未知数的值叫做不等式的解,刚才同学们所说的这些数哪些是不等式2/3x>50的解呢?

问题4、判断下列数中哪些是不等式2/3x>50的解:

76,73,79,80,74.9,75.1,90,60

你能找出这个不等式其它的解吗?它到底有多少个解?你从中发现了什么规律?

学生活动:让学生通过计算,动手验证,动脑思考,初步体会不等式解及其解集的意义,再归纳结论。

设计意图:遵循学生的认知规律,有意识,有计划,有条理地设计一些引人入胜的问题,可让学生始终处在积极的思维状态,不知不觉中接受了新知识,分散了难点。

(三)不等式解集的表示方法

1.教师示范

2.多媒体展示

设计意图:教师示范,渗透着数形结合的思想方法,为后续学习作了铺垫。

三.巩固新知

多媒体展示

1.下列数值哪些是不等式x+3>6的解?哪些不是?

-4,-2.5,0,1,2.5,3,3.2,4.8,8,12

2.用不等式表示:

(1)a是正数(2)a是负数

(3)a与5的`和小于7(4)a与2的差大于-7

(5)a的4倍大于8(6)a的一半小于3

3.直接想出不等式的解集,并在数轴上表示出来。

;(1)x+3>6(2)2x<8(3)x-2>0

设计意图:巩固对不等式解及其解集的理解,并会在数轴上表示不等式的解集。

四.归纳总结

1.不等式与一元一次不等式的概念;

2.不等式的解与不等式的解集;

3.不等式的解集在数轴上的表示。

  五.布置作业

1.书面作业:第134页1,2,3

2.课外作业:第134页5———13。

  六.板书设计

9.1.1不等式及其解集

1.不等式、一元一次不等式的概念

2.不等式的解、不等式的解集

3.不等式解集的表示方法

七年级数学说课稿2

我说课的内容是七年级《数学》上册《有理数的乘法》的第1课时。下面我主要从教材分析、教学目标、教法与学法、教学过程分析四个方面进行说课:

一、 教材分析:

1. 教学内容:

本节教材设置了甲、乙两个水库的水位变化的现实情境,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现、探索出有理数的乘法法则,并能用自己的语言描术,由有理数的乘法的练习中引出倒数的概念,进一步探索出几个不等于零的有理数乘法的法则及乘法运算律,使同学们真正地掌握有理数的乘法运算。

2. 教材地位和作用:

“有理数的乘法(1)”占有十分重要的地位,它是前几课的延伸与拓展,是有理数除法运算的基础,也为今后学习有理数四则混合运算奠定了基础,具有很重要的地位。

二、 教学目标:

1. 能力目标:经常探索有理数乘法法则,发展观察、归纳、猜想、验证等能力。

知识目标:会运用有理数的乘法法则熟练地进行有理数的乘法运算。

2. 教学重难点:

本节的重点即为经历探索有理数乘法法则运算律的过程,发展学生观察、归纳、猜测、验证等能力,使学生在理解记忆乘法法则的基础上会熟练地进行有理数的乘法运算。难点是确定多个不等于零的有理数相乘的积的符号,及有一 ……此处隐藏23508个字……怎样的数量关系呢?

学生首先独立完成活动1,鼓励学生运用多种方法进行探索,开放式的问题有利于培养学生的创新思维.在此过程中教师要关注:学生能否按要求正确画图并准确标记直线和角;能否准确找出同位角、内错角和同旁内角,分别进行讨论,并得出正确结论.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探索活动.

2.在小组内同伴交流:解决问题的方法一样吗?得到的结论相同吗?并把自己的猜想表述出来.

学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:(1)用量角器进行度量;(2)通过剪纸拼图进行比较.

通过交流积累了较为充分的事实基础,为有效地进行归纳概括提供了帮

助.教师深入合作小组,倾听学生的见解,时刻关注学生在这个过程中生成的新问题,并给予适时的指导点拨,鼓励学有困难的学生积极投入到讨论中,注意表扬表现突出的学生.

3.展示探究过程和结论

合作小组代表上台借助投影全面展示本小组的探究过程和结果,教师注意选择具有代表性的各种方法,并关注学生叙述结论的语言是否准确.

鼓励学生在独立思考的基础上与他人合作交流,每个学生的独立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.探究平行线的性质是本节课的教学重点,让学生充分经历动手操作—独立思考—合作交流—得出猜想的探究过程,突出重点.适当的合作交流也有利于学生逐渐形成良好的身心素质.

教师演示:

平行线的性质比较抽象,根据学生的认知特点,加强直观教学,利用几何画板的度量功能分别量出三对同位角、内错角、同旁内角的`度数,让学生直观验证探究的结论.然后改变截线的位置,帮助学生在运动变化中进一步明确其中不变的数量关系.

〈三〉归纳性质说理证明

1.平行线的性质

性质1.两直线平行,同位角相等.

性质2.两直线平行,内错角相等.

性质3.两直线平行,同旁内角互补.

在学生合作交流后,教师归纳并板演平行线的性质,规范文字语言.

2.试一试用符号语言表达上述三个性质.

学生独立思考回答,教师组织学生互相补充,并出示准确形式.

如图:

性质1.∵a∥b,性质2.∵a∥b,性质3.∵a∥b,

∴∠1=∠2.∴∠2=∠3.∴∠5+∠6=180o.

帮助学生理解文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.

3.你能根据平行线的性质1说出性质2、3成立的道理吗?

例如:如图,

∵a∥b,

∴∠1=∠2.()

又∵∠3=,(对顶角相等)

∴∠2=∠3.

类似的,对于性质3请写出推理过程.

学生观察图,独立思考填空.此处将由性质1推导性质2的过程以留白形式出现,循序渐进的引导学生思考,使学生初步养成言之有据的习惯,从而能进行简单的推理.教师关注学生独立书写性质3的推理过程中能否做到知识的合理迁移,书写是否正确.引导学生从“说点儿理”向“说清理”过渡,由模仿到独立操作逐步培养学生的推理能力.

4.对比平行线的判定方法和性质,你能说出它们的区别吗?

学生独立思考后回答,教师引导学生明确判定与性质最大的区别在于条件和结论互逆,即从角的相等或互补关系得到两直线平行是平行线的判定;反过来,由直线的平行得到角的相等或互补关系,是平行线的性质.这里是学生升入初中以来第一次接触判定和性质,要让学生明确它们之间的区别,防止在应用时发生混淆.为后面学习其他图形的判定和性质作好铺垫.

〈四〉应用新知巩固练习

1.现在你能解决奥运会道路建设的问题了吗?

2.已知:如图1,MN∥EF,CD分别交MN、EF于A、B,

找出图1中相等的角,并说明理由.

3.如图2,填空:

①∵ED∥AC(已知)

∴∠1=∠C(

;)

②∵AB∥DF(已知)

∴∠3=∠()

③∵AC∥ED(已知)

∴∠=∠(两直线平行,内错角相等)

4.如图3,∠1+∠2=180,∠3=108,求∠4的度数.

首先利用所学知识解决引入问题,充分利用教学资源,并让学生体会数学是解决实际问题的有效手段;第2题回归基本图形让学生充分指出相等的角(包括对顶角),从而体会根据平行线的性质可以达到转化角的效果;第3题从不同角度应用性质,强化重点知识的理解;第4题先判定平行再应用性质进行简单的推理计算,从而在解题过程中辨析判定和性质,要求学生会用平行线的性质进行计算.随堂练习可以帮助学生巩固新知,老师从学生解题过程中了解教学效果,从简单图形到复杂图形、从单一知识到几个知识的综合运用,进一步提高学生的识图能力,逐步提高推理能力和解决问题的能力.

〈五〉归纳小结布置作业

课堂小结:

1.今天我们学习了平行线的性质:

性质1.两直线平行,同位角相等.

性质2.两直线平行,内错角相等.

性质3.两直线平行,同旁内角互补.

2.平行线的性质和判定的区别与联系

条件结论

判定

性质

3.我们知道了能够运用平行线的性质得到两个角相等或互补的结论,它是后面学习中进行计算和证明的常用依据,可以用来转化角.

4.回顾发现平行线的性质所经历的环节,感受发现图形性质的方法.

师生共同对本节课进行总结,教师引导学生从知识和技能两方面进行归纳.帮助学生梳理知识脉络,回顾平行线的性质,突出教学重点;引导学生说明白性质和判定的联系和区别,课下完成对比表格,下节课进行展示,从而突破难点;最后教师点明平行线的性质的作用及发现图形性质的方法,提升学生的认识.

分层作业:

(1)看书P21—P23(补全书上留白,划出重点内容);

(2)书P25习题5.3第1—6题;

(3)探究题(选作)

如图1:已知AB∥DE,那么∠1+∠2+∠3等于多少度?为什么?

当已知条件不变,而图形变为如图2时,结论改变了吗?图3中的∠1+∠2+∠3+∠4是多少度呢?如果如图4所示,∠1+∠2+∠3+…+∠n的和为多少度?你找到了什么规律吗?

作为课堂教学的评价延续,可及时了解学生对本节课知识的掌握情况,对教学进度和方法进行适当的调整,对有困难的学生给予适时的指导.看书帮助学生养成复习的好习惯;必作题进一步巩固平行线的三个性质及应用;选作题为学有余力的学生提供更广阔的探索空间,提高解决问题的能力.

以上是我对本节课教学的一些设想,还有很多不足之处,恳请您们的批评指正,谢谢!

《七年级数学说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式