《分数除法》教案

时间:2024-12-04 23:15:18
《分数除法》教案

《分数除法》教案

在教学工作者实际的教学活动中,有必要进行细致的教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。教案要怎么写呢?下面是小编精心整理的《分数除法》教案,欢迎阅读,希望大家能够喜欢。

《分数除法》教案1

教学目标

知识与技能:让学生经历用假设对比方法来解决分数工程问题的过程理解并掌握把工作总量看作单位”1”的分数工程问题的基本特点解题思路和解题方法。

过程与方法:在解题的过程中,通过理清数量关系、找准工作总量来解决学习中的难点问题,掌握用假设法来解决问题的基本策略。

情感态度与价值观:培养学生严谨的'学习态度、勇于探究创新的精神及合作的意识。

教学重点:掌握分数工程问题的解题思路与方法。

教学难点:理解工程问题中的工作总量与单位“1”的关系及工作效率的求法。

教学过程:

一、复习导入

1、以前我们学过做工问题,谁还记得做工问题涉及到哪三种量?(工作总量、工作时间、工作效率)它们之间有什么关系呢?

生口述,教师出示投影:

工作总量=工作效率÷工作时间

工作效率=工作总量÷工作时间

工作时间=工作总量÷工作效率

2、外贸公司的蒋经理急需加工3000套服装。

甲厂单独完成需15天。

乙厂单独完成需10天。

(学生根据条件提出问题,教师根据学生提出的问题进行板书)

(1)依据三量关系,这道题已知什么?求什么?怎样列式?

(2)说说工作效率、工作时间、工作总量三个量间的关系的其它的等量关系式

3、引出课题:

像这样的涉及工作效率、工作时间、工作总量的问题,在数学上,我们称之为“工程问题”。今天我们一起来探究。(板书课题:工程问题)

二、探究新知

1、出示例题

外贸公司的蒋经理急需加工一批服装。甲厂单独完成需15天,乙厂单独完成需10天,两厂合作需要几天完成?

(将导入的习题与例题放一起进行对比)

2、阅读理解

请找出已知量和未知量

(已知:甲厂的工作时间,乙厂的工作时间;未知:两厂的工作效率、工作总量)

根据工作总量、工作时间、工作效率这三者之间的关系,要求两队合修多少天能修完,还需要知道哪些条件?

学生讨论交流后汇报:

3、变换题中的条件再分析解答。

(1)把3000套改为6000套、1500套、5000套、9000套。请你们以小组为单位,每一组选择一个数据解答出来。

3、分析与解答

(1)学生思考,讨论交流,道路长度未知,我们可以用什么方法解决这类问题

(学生分小组思考、讨论提出解决问题的方案)

(2)出示课堂活动卡(分小组讨论交流尝试解决问题)

设加工套服装

甲厂每天加工多少套:

乙厂每天加工多少套:

两厂合作,每天加工多少套:

两厂合作,需要多少天:

4、展示环节

(1)抽3-4组同学上台进行展示,并说明解题思路。

(2)观察比较几位同学的解决过程,找发现。

(学生畅所欲言:几组同学的工作总量不一样,每厂的工作效率不一样,最后的结果是一样的)

5、归纳总结

三、巩固练习

1、六(2)班教室做值日,由吴丽斌同学单独完成需x小时,由周超同学单独完成需小时,两人一起做,要多少时间完成?

2、导入部分加一个条件,丙厂也来加入,丙厂单独完成需12天,请提出问题并解答!

四、课堂总结

1、用分数解决工程问题的方法

(1)把工作总量看成单位“1”

(2)谁几天完成,谁的工作效率就是几分之一

(3)工作总量÷工作效率=工作时间

2、还有哪些问题可以用工程问题来解答?

《分数除法》教案2

教学目标

1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.

2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.

教学重点

理解分数乘、除法应用题的异同点,会正确解答.

教学难点

能正确解答分数乘、除法应用题.

教学过程

一、复习引新

(一)下面各题中应该把哪个数量看作单位“1”?

1.花手绢的块数是白手绢的

2.白手绢块数的 正好是花手绢的块数.

3.花手绢的块数相当于白手绢的

4.白手绢块数的 倍相当于花手绢的块数

(二)教师提问

1.求一个数是另一个数的的几分之几用什么方法?

2.求一个数的几分之几是多少用什么方法?

3.已知一个数的几分之几是多少,求这个数,用什么方法?

(三)谈话导入

为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.

二、讲授新课

(一)教学例3

1.课件演示:分数除法应用题

2.比较.

(1)我们把这三道题放在一起比较,它们有什么相同点?

相同点:三个数量是相同的;需要找准单位“1”来分析.

(2)它们有什么区别呢?

不同点:已知和所求不同;解题方法不同.

3.小结:分数应用题主要有以上三类:

(1)求一个数是另一个数的几分之几.

(2)求一个数的几分之几是多少.

(3)已知一个数的几分之几是多少求这个数.

4.解答分数应用题的方法是什么?

抓住分率句;找准单位“1”;画图来分析;列式不必急.

三、巩固练习

(一)应用题

1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

(1)学生独立分析列式

(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.

2.学校有故事书36本,是科技书的 ,科技书有多少本?

3.学校有故事书36本,科技书是故事书的 ,科技书有多少本?

(二)补充条件并列式解答.

一条路长15千米,修了全长的 ,_________________?

(三)选择正确答案

1.修一条长240千米的公路, ……此处隐藏14506个字……3):( ×3)=6:10=3:5=

↓ ↓

为什么前项×3 后项也×3 ?

这是通过化简比,得出结果还是3:5

问:化简比依据是什么?

对比:谁能说一说:求比值与化简比有什么不同?

生:求比值可以用前项÷后项,是一个商,结果可以是小数,分数或整数。

而化简比是根据比的性质,化成最简整数比,结果必须写成比的形式。

师:其实,求比值的.计算中,常常会用到分数除法的计算方法。

三、解决问题,提升方法

1、根据线段图提简单的分数除法问题

师:如果a是六年级女生有300人 ,你能提出什么问题呢?

生:六年级总数?

师:可以吗?还可以怎么提?(示题)会做吗?

生:300÷

师 为什么用除法?题目的关键是哪句话?

生:女生是男生的

师:根据条件,可以写出什么数量关系式?

生:(男生)× =300

师:现在知道为什么用除法了吗?

师:还可以用什么方法?

生: 〤=300

2、稍复杂的分数除法问题

师:如果把条件换一换:女生比男生少 怎么做呢?

(生做,然后汇报交流)

师:对比这两题,你有什么发现?

生:男生是单位“1”,未知 。

师:求单位“1”可以用什么方法?

生:可以用方程,也可以用除法。

师:用除法做是根据了除法的意义,而用方程相当于顺着题目的意思列式,把分数除法问题转化成分数乘法法问题 ,这样就简单了。

3、比的应用

师:我把题目全换一换(示投影),变成了什么问题?

生:比的问题

师:能直接列式吗?

生:列式解答

师:把比转化成分数

问:为什么不用方程?

生:单位“1”知道,是800人。

师:这种按比分配的问题,也转化成了求“一个数的几分之几是多少”的分数乘法问题。

小结:这样把知识联系起来,问题就简单多了,应用起来也更灵活了!

四、综合练习,自我检测

师:经过我们再次整理,就把本单元这些散落的知识点穿在了一起,形成一个知识网。找到了联系,明确了方法,老师这儿还有一份检测题,有信心完成吗?

(分发练习纸,根据完成情况反馈交流)

(分析错因,大多是计算出错)

小结:看来掌握方法固然重要,细心认真的学习习惯也很重要!

五、课堂小结

师:咱们六年级的同学,面临对小学六年所学知识的复习。希望今天这节课对你们以后的学习能有所帮助,有所启发!

附练习题

一、 填空

1、8:10= =40÷( )=( )(填小数)

2、20千克:0.2吨的比值是( ),最简整数比是( )。

二、计算

÷2 ÷

×8÷ ( ÷

三、应用

一本书的 是80页,已看的与未看的页数比是9:1。已经看了多少页?

《分数除法》教案14

教学目标:

使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。

教学重点:

分析题里所含的数量关系,把哪个数看作单位1。

教学难点:

怎样列出方程。

教学过程:

一、复习

列式计算,并口述把哪个数看作单位1。

(1)的是多少? ( )看作单位1。

(2)14的是多少? ( )看作单位1。

(3)1的是多少? ( )看作单位1。

二、新授

1、板书课题:列方程解文字题

2、出示例4:一个数的是,这个数是多少 ?

(1) 分析数量关系

提问

①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)

②硬该把哪个数看作单位1?为什么?

③单位1所表示的`数知道吗?

④怎样求单位1所表示的“这个数”?(引导学生用设未知数X的方法来解决)。

使学生明确:根据一个数乘以分数的意义。

由已知:一个数的是,得:一个数×=?

(2) 列方程解文字题。

第一步,设未知数为X。教师板书

解:设这个数是X。

第二步,根据题意列出方程。教师板书

X×=

第三步,解这个方程。教师板书:(略)

第四步,检验:(略)

第五步:作答

3、小结

(1)怎样设求知数?

要求单位“1”的量,设单位“1”的量为X。

(2) 样根据题意列方程?

找出题中数量之间的等量关系。

三、巩固练习

1、教科书第35页“做一做”。

2、一个数的1倍等于2,求这个数。

四、课堂练习

练习九第12、16—19题。

五、作业

练习九第13—15题。

六、课外思考

练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。

《分数除法》教案15

教材分析

1.教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,从而得到两个关系式:1÷2=1/2,7÷3=7/3。再引导学生比较两组关系式,发现分数与除法的关系。分数中分母的相当于除法中的除数,因为0不能作除数,所以分母也不能是0。

2.学习本节课也便于我们在今后的学习中更好的学习分数的基本性质等。

学情分析

1.通过课前与学生交流获得学生掌握旧知的情况。

2.学习本课前,学生已经理解了分数的意义和除法的'意义,具有一定的操作画图能力和小组合作能了,知道了出书不能为0。

3.假分数与带分数的互化在以后的应用中较少,因此要求不必过高,难度不要过大,只要学生会做就可以了。

教学目标

1、让学生理解和掌握除法和分数的关系,能用分数表示两个自然数相除的商;

2、能应用这种关系把整数表示的低级单位的单名数改写成用分数表示的高级单位的单名数,

3、培养学生的观察、比较和分析、推理等思维能力。教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生动手操作的能力和抽象,概括,归纳的能力。

教学重点和难点

教学重点:分数的数感培养,以及与除法的联系。

教学难点:抽象思维的培养。

《《分数除法》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式